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Abstract. A weakly nonlinear theory of wave propagation in two superposed dielectric fluids in the presence
of a horizontal electric field is investigated using the multiple scales method in (2+1)-dimensions. The
equation governing the evolution of the amplitude of the progressive waves is obtained in the form of a
two-dimensional nonlinear Schrödinger equation. We convert this equation for the evolution of wave packets
in (2+1)-dimensions, using the function transformation method, into an exponentional and a Sinh-Gordon
equation, and obtain classes of soliton solutions for both the elliptic and hyperbolic cases. The phenomenon
of nonlinear focusing or collapse is also studied. We show that the collapse is direction-dependent, and
is more pronounced at critical wavenumbers, and dielectric constant ratio as well as the density ratio.
The applied electric field was found to enhance the collapsing for critical values of these parameters.
The modulational instability for the corresponding one-dimensional nonlinear Schrödinger equation is
discussed for both the travelling and standing waves cases. It is shown, for travelling waves, that the
governing evolution equation admits solitary wave solutions with variable wave amplitude and speed. For
the standing wave, it is found that the evolution equation for the temporal and spatial modulation of the
amplitude and phase of wave propagation can be used to show that the monochromatic waves are stable,
and to determine the amplitude dependence of the cutoff frequencies.

PACS. 47.20.-k Hydrodynamic stability – 52.35.Sb Solitons; BGK modes – 42.65.Jx Beam trapping,
self-focusing and defocusing; self-phase modulation – 47.65.+a Magnetohydrodynamics and
electrohydrodynamics

1 Introduction

The Rayleigh-Taylor instability, which occurs when a
heavy fluid is supported by a lighter one, has great rele-
vance in astrophysical, geophysical, controlled fusion, and
industrial processes such as supernova explosions, con-
trolled thermonuclear fusion experiments, and the implo-
sion of inertial-confinement-fusion capsules. The nonlinear
aspects of such an instability in dispersive media were in-
vestigated by Whitham [1], and Karpman [2], with an im-
portant emphasis on obtaining the nonlinear Schrödinger
equation. Using inverse-scattering transforms, Zakharov
and Shabat [3] obtained the solution of the nonlinear
Schrödinger equation in (1+1)-dimensions. Their analy-
sis reveals that smooth initial data lead to localized soli-
ton solutions, and is related to the terminal state of the
modulational instability.

Wave instabilities are probably the most remark-
able physical phenomena that may occur in a nonlin-
ear system [4]. Modulational instability and breakup of
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a continuous-wave field of large intensity was first pre-
dicted and analyzed in the context of waves in fluids [1].
A similar effect in the self-focusing of light in optical me-
dia with a nonlinear response [5] is responsible for the
appearance of hot spots and associated optical damage in
media irradiated by high power laser pulses. Self-focusing
processes provide a wide area of investigations in various
fields of physics: in optics, the light self-focusing results
from the compressing influence of a Kerr type nonlinear-
ity on the spatial profile of the beam [6–9]. In plasmas, the
pondermotive filamentation of high energy laser pulses is
initiated by slowly varying fluctuations of the electronic
plasma density, and leads to beam fragmentation [10–13].
When self-focusing occurs in a medium, the wave field
becomes singular at a point called the focus, and the am-
plitude of the wave packet becomes infinite, leading to tur-
bulent bursts. This effect may be incorporated in study-
ing the envelope properties in the (2+1)-dimensional wave
packet [14].

Wave collapse, by which a singularity in the wave field
is formed in a finite time, plays an important role in
various branches of physics as one of the most effective
mechanisms for the localization of the wave energy. One
of the central problems in the collapse theory is to find
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the initial conditions collapse for which takes place. From
a mathematical point of view such problems are related
to the nonexistence theorems. These theorems determine
the initial and/or boundary conditions for which the so-
lution of the Cauchy problem only exists until some finite
time [15]. Collapse (or blow-up) occurs when the ampli-
tude of an unstable solitary wave localized in all dimen-
sions grows to infinity in a finite time. As a matter of fact,
the wave collapse is a particular scenario of the instability-
induced evolution of a solitary wave under the action of
perturbations of the same dimension [16–18]. Slunyaev et
al. [19] have recently investigated the process of forma-
tion of huge waves on a finite water region as a result
of dispersive wave grouping due to an appropriate phase
modulation of the initial wave trains. For both one-, and
two-dimensional surface movements, they have examined
this process and compared it with the process of ampli-
fication due to modulational instability highlighting the
importance of the optimal phase modulation, influence of
nonlinear effects, and the presence of a random noise com-
ponent in the wave field.

The nonlinear Schrödinger equation in its many ver-
sions is one of the most important models in mathemat-
ical physics, with applications in different fields such as
plasma physics, water waves, bimolecular dynamics as
well as nonlinear optics or quantum chemistry, to cite
only a few cases (see e.g. Dodd et al. [20]. Hasegawa [8]
and Sulem and Sulem [21,22], and the references therein).
In many of those examples the equation appears as an
asymptotic limit for a slowly varying dispersive wave en-
velope propagating in a nonlinear medium [23–29]. This
equation, which is a generic equation modelling a vari-
ety of wave phenomena, plays a central role in the wave
collapse theory. In the mathematical literature the devel-
opment of a singularity in finite time is mostly referred to
as “blow-up” of the solution. Since the growth of the am-
plitude is associated with a spatial contraction of the wave
packet, the phrase “wave collapse” rather than “blow-up”
is commonly used by physicists. Typically, however, blow-
up occurs before the wave has contracted substantially,
i.e. a narrow fast growing spike emerges on the slowly col-
lapsing wave packet [30–34]. The work of Zakharov and
Synakh [35], in the context of the self-focusing of optical
beams in nonlinear media, has shown that under certain
circumstances, the two-dimensional nonlinear Schrödinger
equation develops a singularity and therefore focuses en-
ergy after a finite time. Consequently this behaviour shows
that nonlinear focusing and therefore growth can set in,
even in a linearly stable regime [36].

The subject of electrohydrodynamics (EHD) has
drawn considerable interest over the past few decades,
and it has a wide range of importance in various physical
situations (see for example, Refs. [37–39], and references
therein). Problems of nonlinear electrohydrodynamic sta-
bility have been considered by many authors in recent
years. El-Sayed and Callebaut [40], in a series of papers,
studied the slow modulation of the interfacial capillary-
gravity waves of two superposed dielectric fluids of uni-
form depth under the influence of a general applied electric

field (tangential or normal) to the interface between the
two fluids, in the presence (or absence) of surface charges
at their interfaces. It was shown that the complex am-
plitude of quasi-monochromatic travelling waves can be
described by a nonlinear Schrödinger equation in a frame
of reference moving with the group velocity. The stabil-
ity characteristics of a uniform wave train are examined
analytically and numerically on the basis of the nonlin-
ear Schrödinger equation. Also, the complex amplitude
of quasi-monochromatic standing waves near the cutoff
wavenumber is found to be governed by a similar type of
nonlinear Schrödinger equation in which the roles of time
and space are interchanged. This equation makes it possi-
ble to estimate the nonlinear effect on the cutoff wavenum-
ber. They [40] have also obtained the envelope solutions
of the steady state in (2+1)-dimensions, in terms of the
Jacobian elliptic functions. It follows that various types
of envelope solutions of the modulated Stokes wave may
exist depending on the relative sign of the terms repre-
senting the dispersive and nonlinear effects. The solitary
and periodic envelope solutions for the general case of any
liquid depth are described. It is shown also that the evo-
lution of the envelope is governed by two coupled partial
differential equations with cubic nonlinearity. The stabil-
ity of the solitons with respect to transverse perturbations
was also investigated. It was found that such wave packets
are stable to short waves, and the waveguides are always
unstable, and that the stability of the system depends
on the values of the dielectric constant ratio, the electric
field, the wavenumber, and the depth of the fluid. Calle-
baut and El-Sayed [41] have investigated the nonlinear
electrohydrodynamic stability of solitary wave packets of
capillary-gravity waves in (2+1)-dimensions. They found
that the complex amplitude of the surface elevation can
be described by a nonlinear Schrödinger equation, which
can be written in the form of a soliton envelope equation.
They obtained, using the tanh method, in a very simple
way, the solitary wave solutions of this equation, which
had been obtained before by them [40], using the Jaco-
bian elliptic functions. They [41] had also used a variation
of the tanh method to obtain alternative kinds of soli-
tary wave solutions of the extended mKdV-KdV-Burgers
equation.

In this paper, we have investigated the nonlin-
ear electrohydrodynamic wave propagation of two su-
perposed dielectric fluids in the presence of a hor-
izontal electric field using the multiple time scales
method in (2+1)-dimensions. The two-dimensional non-
linear Schrödinger equation for the evolution of the am-
plitude of progressive waves has been obtained, and some
classes of soliton solutions of this equation for both the
elliptic and hyperbolic cases are introduced. The phe-
nomenon of nonlinear wave collapse (or blow up) of the
wave packets is studied analytically and numerically. Fi-
nally, the modulational instability for the corresponding
one-dimensional nonlinear Schrödinger equation for both
the travelling and standing waves are discussed in detail,
and the corresponding solitary wave solutions, and insta-
bility conditions are obtained.
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2 Problem formulation

We consider the finite amplitude three-dimensional wave
propagation on the interface z = 0 which separates the two
semi-infinite dielectric inviscid incompressible fluids. The
fluid with density ρ(1), and dielectric constant ε(1) occu-
pies the region z < 0, whereas the region z > 0 is occupied
by the fluid of density ρ(2), and dielectric constant ε(2).
The fluids are influenced by a constant electric field E0 in
the x-direction. We nondimensionalize the various quanti-
ties using the characteristic length l =

√
T/ρ(1)g, and the

characteristic time
√

l/g, where T is the coefficient of sur-
face tension, and g is the acceleration due to gravity acting
in the negative z-direction. The motion is assumed to be
non-rotational, then there are velocity potentials Φ(1),(2)

such that v(1),(2) = ∇Φ(1),(2).
The basic equations governing the perturbed velocity

potentials Φ(1),(2) are

Φ(1)
xx + Φ(1)

yy + Φ(1)
zz = 0, −∞ < z < η(x, y, t), (1)

Φ(2)
xx + Φ(2)

yy + Φ(2)
zz = 0, η(x, y, t) < z < ∞, (2)

where z = η(x, y, t) is the elevation of the free interface
measured from the unperturbed level. We assume that
the quasi-static approximation is valid, and the electric
field E is non-rotational. The electric potentials Ψ (1),(2)

are defined such that

E(1),(2) = E0ex −∇Ψ (1),(2), (3)

and

Ψ (1)
xx + Ψ (1)

yy + Ψ (1)
zz = 0, −∞ < z < η(x, y, t), (4)

Ψ (2)
xx + Ψ (2)

yy + Ψ (2)
zz = 0, η(x, y, t) < z < ∞. (5)

Since the motion must vanish away from the interface, we
must have

|∇Φ(1)| → 0, |∇Ψ (1)| → 0, as z → −∞, (6)

|∇Φ(2)| → 0, |∇Ψ (2)| → 0, as z → ∞. (7)

The boundary conditions at the interface z = η(x, y, t) are
(i) The condition that the interface is moving with the

fluid leads to

ηt − Φ(1),(2)
z + ηxΦ(1),(2)

x + ηyΦ(1),(2)
y = 0,

at z = η(x, y, t). (8)

(ii) The tangential component of the electric field is
continuous at the interface

The unit normal vector N to the interface, is given by

N =
−ηxex − ηyey + ez√

1 + η2
x + η2

y

(9)

and then condition (ii) leads to

ηy [[Ψz]] + [[Ψy]] = 0, at z = η(x, y, t) (10)

ηx [[Ψz]] + [[Ψx]] = 0, at z = η(x, y, t) (11)

ηx [[Ψy]] − ηy [[Ψx]] = 0, at z = η(x, y, t) (12)

where [[·]] represents the jump across the interface.
(iii) The normal electric displacement is continuous at

the interface, and hence we obtain

ηx [[εΨx]] + ηy [[εΨy]] − [[εΨz]] = ηxE0 [[ε]] , at z = η(x, y, t).
(13)

(iv) The normal hydrodynamic stress is balanced by
the normal electric stress. The balance condition is then

Φ
(1)
t − ρΦ

(2)
t + (1 − ρ)η +

1
2

[
Φ(1)2

x − ρΦ(2)2
x

]

+
1
2

[
Φ(1)2

y − ρΦ(2)2
y

]
+

1
2

[
Φ(1)2

z − ρΦ(2)2
z

]
=

(
1 + η2

x + η2
y

)−3/2 [
ηxx(1 + η2

y) + ηyy(1 + η2
x)

−2ηxyηxηy] − 1
2
([[

εΨ2
x

]]
+
[[
εΨ2

y

]]− [[
εΨ2

z

]])
+ E0 [[εΨx]]

+ 2ηxE0 [[εΨz]] − 2ηxηyE0 [[εΨy]] − 2ηx [[εΨxΨz]] − 2ηy [[εΨyΨz]]

+ η2
xE2

0 [[ε]] − 2η2
xE0 [[εΨx]] + higher order terms,

at z = η(x, y, t). (14)

Equation (8) represents the kinematic condition, and
equations (10–13) represent the continuity of the tan-
gential component of the electric field, and the normal
electric displacement at the interface, respectively; while
equation (14) represents the balance condition between
the normal hydrodynamic stress and the normal electric
stress.

In order to describe the nonlinear interactions of the
small but finite amplitude waves, we use the derivative ex-
pansion method with multiple scales. Following the usual
procedure [42], let us expand η, Φ(1),(2), and Ψ (1),(2) in the
following asymptotic series

η(x, y, t) =

N+1∑

n=1

δnηn(x0, x1, . . . , xN , y0, y1, . . . , yN , t0, t1, . . . , tN )

+ O
(
εN+2

)
, (15)

(
Φ(1),(2), Ψ (1),(2)

)
(x, y, t) =

N+1∑

n=1

δn
(
Φ(1),(2)

n , Ψ (1),(2)
n

)

× (x0, x1, . . . , xN , y0, y1, . . . , yN , z, t0, t1, . . . , tN )

+ O
(
εN+2

)
, (16)

where δ is a small parameter indicating the weakness of
the nonlinearity. As shall be dealing with modulational
instability, it is clear that the characteristic growth time
has to be much longer (at least an order of magnitude)
than the period of oscillation. Note that the expansion
of η in equation (15) is independent of z.
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The multiple scales xn(≡ δnx), yn(≡ δny), and
tn(≡ δnt) are assumed to satisfy the following derivative
expansions

∂

∂α
=

N+1∑

n=0

δn ∂

∂αn
+ O

(
εN+2

)
, (17)

where α is any of the variables x, y, and t. It turns out
for the present problem that it is sufficient to take N = 2,
so far as the lowest significant order of approximation is
concerned.

Expanding now the boundary conditions (8)
and (10−14) into Taylor series around the undis-
turbed surface z = 0, then substituting (15–17) into
equations (1, 2, 4), and (5) and the boundary condi-
tions (8) and (10−14), and equating the coefficients of
the same powers in δ, we can obtain a sequence of sets
of equations for ηn, Φ

(1),(2)
n , and Ψ

(1),(2)
n , given in the

Appendix.

3 The evolution of wave packets

We assume that there is no steady flow in the undis-
turbed state, so that we choose the following quasi-
monochromatic waves as the starting solutions to the first
order problem

η1 = A exp(iθ) + c.c., (18)

Φ
(1)
1 = − iω

K
A exp(iθ + Kz) + c.c., (19)

Φ
(2)
1 =

iω

K
A exp(iθ − Kz) + c.c., (20)

Ψ
(1)
1 =

iE0(ε(2) − ε(1))k
(ε(1) + ε(2))K

A exp(iθ + Kz) + c.c., (21)

Ψ
(2)
1 =

iE0(ε(2) − ε(1))k
(ε(1) + ε(2))K

A exp(iθ − Kz) + c.c., (22)

where θ = kx0 + ly0 − ωt0 is the phase of the carrier
wave, k and l are the wavenumber components in the x-,
and y-directions, respectively, K =

√
k2 + l2, and ω being

the frequency, and c.c. stands for the complex conjugate of
the preceding term (or terms), and i is the imaginary unit.
Here, the complex amplitude of the surface elevation A is
a function of slow scales x1, x2, y1, y2, t1, and t2.

In order that the starting solution should not be trivial,
the total wavenumber K, and the frequency ω must satisfy
the following dispersion relation

ω2 =
K

1 + ρ

[
1 − ρ + K2 +

k2E2
0(ε(2) − ε(1))2

(ε(1) + ε(2))K

]
. (23)

The dispersion relation (23) was initially obtained by
Melcher [37], Mohamed and Elshehawey [43] (for the
case of two-dimensional, semi-infinite fluids), and there-
fore their results are recovered, and show that both the

surface tension and the tangential electric field have sta-
bilizing effects.

To derive the equation for the evolution of travelling
waves, we need to proceed to the second order, and higher
order problems. Since our aim is to study the amplitude
modulation for travelling waves when ω2 > 0, we shall sub-
stitute the starting solutions given by equations (18−22)
into the right-hand sides of the second order equations. In
order to obtain the condition that the second order solu-
tions be free of singularities, we can write the solution of
the second order problem in the form

η2 = ΛA2 exp(2iθ) + c.c., (24)

Φ
(1)
2 =

1
K

[
∂A

∂t1
+

ω(1 − Kz)
K2

{
k

∂A

∂x1
+ l

∂A

∂y1

}]

× exp(iθ + Kz) − iω

K
(Λ − K)A2

× exp 2(iθ + Kz) + c.c., (25)

Φ
(2)
2 = − 1

K

[
∂A

∂t1
+

ω(1 + Kz)
K2

{
k

∂A

∂x1
+ l

∂A

∂y1

}]

× exp(iθ − Kz) +
iω

K
(Λ + K)A2

× exp 2(iθ − Kz) + c.c., (26)

Ψ
(1)
2 =

E0(ε(2) − ε(1))
(ε(1) + ε(2))K

[
∂A

∂x1
− k(1 − Kz)

K2

×
{

k
∂A

∂x1
+ l

∂A

∂y1

}]
exp(iθ + Kz)

+
ikE0(ε(2) − ε(1))
(ε(1) + ε(2))K

(Λ − K)A2

× exp 2(iθ + Kz) + c.c., (27)

Ψ
(2)
2 =

E0(ε(2) − ε(1))
(ε(1) + ε(2))K

[
∂A

∂x1
− k(1 + Kz)

K2

×
{

k
∂A

∂x1
+ l

∂A

∂y1

}]

× exp(iθ − Kz) +
ikE0(ε(2) − ε(1))
(ε(1) + ε(2))K

(Λ + K)A2

× exp 2(iθ − Kz) + c.c., (28)

where

Λ =
K(1 − ρ)

(1 + ρ)(1 − ρ − 2K2)

[
(1 − ρ) + K2

+
k2E2

0(ε(2) − ε(1))2

(ε(1) + ε(2))K

{
1 +

(1 + ρ)(ε(2) − ε(1))
(1 − ρ)(ε(1) + ε(2))

}]
. (29)
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The case when (1 − ρ = 0) or (1 − ρ − 2K2 = 0), for
which η2, Φ

(1),(2)
2 , and Ψ

(1),(2)
2 become infinite, corresponds

to the case of the second harmonic resonance which can be
dealt with along the same lines outlined by Lee [44], among
others. In this section, we have assumed this quantity to
be different from zero in equations (24–28).

The non-secularity condition for the second order per-
turbation is obtained from the last boundary condition of
the second order equations, by equating to zero the coef-
ficient of exp(iθ), to obtain

∂A

∂t1
+ vk

∂A

∂x1
+ vl

∂A

∂y1
= 0, (30)

together with its c.c., where vk = dω/dk and vl = dω/dl
are the group velocities of the wave train the x-, and
y-directions, respectively. Equation (30) implies that, for
the lowest order in δ, the complex amplitude A remains
constant in a frame of reference moving with the group ve-
locities, that is, A depends on x1, y1, and t1 only through
ζ = x1 + y1 − (vk + vl)t1 = δ[x + y − (vk + vl)t].

4 Nonlinear EHD wave collapse

We now proceed to the third order problem. On using
the first and second order solutions, we simplify the right
hand side of the third order equations, and after some
straightforward reductions, we can express the uniformly
valid particular solutions for η3, Φ

(1),(2)
3 , and Ψ

(1),(2)
3 in

the form

η3 = (K2/2)|A|2A exp(iθ) + c.c., (31)

Φ
(1)
3 =

[
1
K

∂A

∂t2
+ 3iω

(
Λ − K

3

)
|A|2A +

iω

2K3

×
{

(Kz − 1)
(

∂2A

∂x2
1

+
∂2A

∂y2
1

)
− 2(Kz − 1)

ω

×
(

k
∂

∂x1
+ l

∂

∂y1

)
∂A

∂t1
+

1
K2

(3 − 3Kz + K2z2)

×
(

k
∂

∂x1
+ l

∂

∂y1

)(
k

∂A

∂x1
+ l

∂A

∂y1

)
+ 2i(Kz − 1)

×
(

k
∂A

∂x2
+ l

∂A

∂y2

)}]
exp(iθ + Kz)

+
1

2K

[
(Λ − K)

∂A2

∂t1
+

ω

K2

{
(1 − 2Kz)Λ

+2K2z
}(

k
∂A2

∂x1
+ l

∂A2

∂y1

)]
exp 2(iθ + Kz)

+ 3iω

(
Λ − K

2

)
A3 exp 3(iθ + Kz) + c.c. (32)

Φ
(2)
3 =

[
− 1

K

∂A

∂t2
+ 3iω

(
Λ +

K

3

)
|A|2A +

iω

2K3

×
{

(Kz + 1)
(

∂2A

∂x2
1

+
∂2A

∂y2
1

)
− 2(Kz + 1)

ω

×
(

k
∂

∂x1
+ l

∂

∂y1

)
∂A

∂t1
− 1

K2
(3 + 3Kz + K2z2)

×
(

k
∂

∂x1
+ l

∂

∂y1

)(
k

∂A

∂x1
+ l

∂A

∂y1

)
+ 2i(Kz + 1)

×
(

k
∂A

∂x2
+ l

∂A

∂y2

)}]
exp(iθ − Kz)− 1

2K

×
[
(Λ + K)

∂A2

∂t1
+

ω

K2
{(1 + 2Kz)Λ

+2K2z
}
(

k
∂A2

∂x1
+ l

∂A2

∂y1

)]
exp 2(iθ − Kz)

+ 3iω

(
Λ +

K

2

)
A3 exp 3(iθ − Kz) + c.c. (33)

Ψ
(1)
3 =

[
iE0(ε(2) − ε(1))
2(ε(1) + ε(2))K3

{
k(1 − Kz)

(
∂2A

∂x2
1

+
∂2A

∂y2
1

)

+2(1 − Kz)
(

k
∂

∂x1
+ l

∂

∂y1

)
∂A

∂x1

− k

K2
(3 − 3Kz + K2z2)

(
k

∂

∂x1
+ l

∂

∂y1

)

×
(

k
∂A

∂x1
+ l

∂A

∂y1

)
+ 2ik(1 − Kz)

×
(

k
∂A

∂x2
+ l

∂A

∂y2

)}
+

ikE0(ε(2) − ε(1))
(ε(1) + ε(2))

×
{

K +
(ε(2) − 3ε(1))Λ
(ε(1) + ε(2))

}
|A|2A

+
E0(ε(2) − ε(1))
(ε(1) + ε(2))K

∂A

∂x2

]
exp(iθ + Kz)

+
E0(ε(2) − ε(1))
2(ε(1) + ε(2))K

[
(Λ − K)

∂A2

∂x1
− k

K2

×{(1 − 2Kz)Λ + 2K2z
}
(

k
∂A2

∂x1
+ l

∂A2

∂y1

)]

× exp 2(iθ + Kz) − 3ikE0(ε(2) − ε(1))
(ε(1) + ε(2))

(
Λ − K

2

)

× A3 exp 3(iθ + Kz) + c.c. (34)
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Ψ
(2)
3 =

[
iE0(ε(2) − ε(1))
2(ε(1) + ε(2))K3

{
k(1 + Kz)

(
∂2A

∂x2
1

+
∂2A

∂y2
1

)

+2(1 + Kz)
(

k
∂

∂x1
+ l

∂

∂y1

)
∂A

∂x1

− k

K2
(3 + 3Kz + K2z2)

(
k

∂

∂x1
+ l

∂

∂y1

)

×
(

k
∂A

∂x1
+ l

∂A

∂y1

)
+ 2ik(1 + Kz)

×
(

k
∂A

∂x2
+ l

∂A

∂y2

)}
+

ikE0(ε(2) − ε(1))
(ε(1) + ε(2))

×
{

K +
(3ε(2) − ε(1))Λ
(ε(1) + ε(2))

}
|A|2A

+
E0(ε(2) − ε(1))
(ε(1) + ε(2))K

∂A

∂x2

]
exp(iθ − Kz)

+
E0(ε(2) − ε(1))
2(ε(1) + ε(2))K

[
(Λ + K)

∂A2

∂x1

− k

K2

{
(1 + 2Kz)Λ + 2K2z

}
(

k
∂A2

∂x1
+ l

∂A2

∂y1

)]

× exp 2(iθ − Kz) +
3ikE0(ε(2) − ε(1))

(ε(1) + ε(2))

(
Λ +

K

2

)

× A3 exp 3(iθ − Kz) + c.c. (35)

Finally, substituting from the third order solution into the
last boundary condition of the third order equations, we
obtain for the non-secularity condition from the coefficient
of exp(iθ), the following equation

2i

{
∂A

∂t2
+ vk

∂A

∂x2
+ vl

∂A

∂y2

}
+ P1

∂2A

∂x2
1

+ 2P2
∂2A

∂x1∂y1
+ P3

∂2A

∂y2
1

= Q|A|2A, (36)

where

P1 = − 1
ω

v2
k +

K

ω(1 + ρ)

{
(l2 − 2k2)(1 − ρ + K2)

2K4

+
E2

0(ε(2) − ε(1))3(l2 − k2)
(ε(1) + ε(2))K3

+ 1

}

+
2k

K2
vk (37)

P2 = − 1
ω

vkvl − kl

2ωK2(1 + ρ)

×
{

3(1 − ρ + K2) +
2KE2

0(ε(2) − ε(1))2

(ε(1) + ε(2))

}
+

1
K2

(kvl + lvk)

(38)

P3 = − 1
ω

v2
l +

K

ω(1 + ρ)

×
{

(k2 − 2l2)(1 − ρ + K2)
2K4

+ 1

}

+
2l

K2
vl (39)

Q =
K

ω(1 + ρ)

[{
2ω2(1 − ρ) +

2k2E2
0 (ε(2) − ε(1))3

(ε(1) + ε(2))2

}
Λ

+
K2

2
{
4(1 − ρ) + K2

}
]
. (40)

The partial differential equation (36) is elliptic or hy-
perbolic, depending on the sign of P = (P 2

2 −P1P3). When
P is negative, we have the elliptic case, for which the ap-
propriate transformations are

τ = t2, Θ = x2 + y2 − (vk + vl) t2 (41)

and

ζ1 =
x1√
P1

, ζ2 =
{

P3 − P 2
2

P1

}−1/2(
y1 − P2

P1
x1

)
. (42)

Under such a transformation, equation (36) now reduced
to a standard two-dimensional nonlinear Schrödinger
equation. On rewriting equation (36) in the group velocity
reference frame, we obtain the following elliptic equation

2i
∂A

∂τ
+

∂2A

∂ζ2
1

+
∂2A

∂ζ2
2

= Q|A|2A. (43)

Equation (43) is the standard nonlinear Schrödinger
equation in (2+1) dimensions. For the hyperbolic case,
P should be positive. We introduce the transforma-
tions (41) with

ζ1 =
x1√
P1

, ζ2 =
{

P 2
2

P 2
1

− P3

}−1/2(
P2

P1
x1 − y1

)
. (44)

Proceeding as before, we obtain

2i
∂A

∂τ
+

∂2A

∂ζ2
1

− ∂2A

∂ζ2
2

= Q|A|2A. (45)

Equations (43) and (45) can be expressed in the form

2i
∂A

∂τ
+ ∆1

∂2A

∂ζ2
1

+ ∆2
∂2A

∂ζ2
2

= Q|A|2A, (46)

with ∆1 = 1, and

∆2 = 1 when P 2
2 − P1P3 < 0 (47)

∆2 = −1 when P 2
2 − P1P3 > 0. (48)

It should be pointed out that in the small ampli-
tude limit, solitary waves with damped oscillations may
be viewed as envelope-soliton solutions of the nonlinear
Schrödinger equation, such that the wave crests with the
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same speed as the envelope. This can be readily under-
stood on physical grounds because, at an extremum of
the linear phase speed, the group velocity is equal to the
linear phase speed. Hence, close to the bifurcation point,
it is possible for the speed of the carrier wave to match
the group velocity at a wavenumber in the vicinity of the
phase speed extremum.

Solitary wave envelopes are special solutions of equa-
tions (43) and (45), respectively, and can be written in the
form

A = ±a sech

{

a

(
− Q

2γ±

)1/2

Γ

}

exp (iλ∗τ) (49)

with

Γ = ζ1 cosΦ + ζ2 sinΦ (50)

γ± = (1, cosΦ) (51)

λ∗ = (1/2)Qa2 (52)

where a is the peak amplitude of the packet. These solu-
tions are valid only if Qγ± < 0. It is clear that a solitary
envelope moves with the group velocity (vk, vl), and is
inclined at an angle Φ to the x-axis, the direction of prop-
agation of the wave crests.

Suppose that the solution of the elliptic equation (43)
can be written in the form [13]

A = Θ(τ, ζ1, ζ2) exp[i(c0τ + c1ζ1 + c2ζ2)] (53)

where c0, c1, and c2 are real constants. Substituting from
equation (53) into equation (43), we obtain

2i
∂Θ

∂τ
+ 2ic1

∂Θ

∂ζ1
+ 2ic2

∂Θ

∂ζ2
+

∂2Θ

∂ζ2
1

+
∂2Θ

∂ζ2
2

= QΘ3 − CΘ

(54)
where we have put 2c0 + c2

1 + c2
2 = −C (a constant). To

obtain the exponential solution of equation (54), we use
the following function transformation

Θ =
√

C/Q exp(φ/2) (55)

where φ = φ(τ, ζ1, ζ2) is a function of τ , ζ1, and ζ2, then
equation (54) can be written in the form

2i
∂φ

∂τ
+ ic1

∂φ

∂ζ1
+ ic2

∂φ

∂ζ2
+

∂2φ

∂ζ2
1

+
∂2φ

∂ζ2
2

+
1
2

[(
∂φ

∂ζ1

)2

+
(

∂φ

∂ζ2

)2
]

= 2C[exp(φ) − 1]. (56)

Setting φ = φ(ζ) as a function of a single parameter ζ,
then equation (56) yields
[
2i

∂ζ

∂τ
+ 2ic1

∂ζ

∂ζ1
+ 2ic2

∂ζ

∂ζ2
+

∂2ζ

∂ζ2
1

+
∂2ζ

∂ζ2
2

]
dφ

dζ

+

[(
∂ζ

∂ζ1

)2

+
(

∂ζ

∂ζ2

)2
][

d2φ

dζ2
+

1
2

(
∂φ

∂ζ

)2
]

=

2C[exp(φ) − 1]. (57)

Explicitly, some solutions of equation (57) obey the fol-
lowing system of equations

2i
∂ζ

∂τ
+ 2ic1

∂ζ

∂ζ1
+ 2ic2

∂ζ

∂ζ2
=

∂2ζ

∂ζ2
1

+
∂2ζ

∂ζ2
2

= 0 (58)

(
∂ζ

∂ζ1

)2

+
(

∂ζ

∂ζ2

)2

= 1 (59)

d2φ

dζ2
+

1
2

(
∂φ

∂ζ

)2

= 2C[exp(φ) − 1]. (60)

The solution of equation (60) can be written in the form

φ = 2 ln
[√

2 sec
(√

C ζ + ζ0

)]
, and ζ0 = const. (61)

Substituting from equation (61) into equation (55),
the soliton solution (53) of the two-dimensional nonlinear
Schrödinger equation (43) will be given by

A =
√

2C/Q sec
(√

C ζ + ζ0

)

× exp[i(c0τ + c1ζ1 + c2ζ2)]. (62)

Note that, ζ denotes a solution of equations (58) and (59),
and due to the fact that these two equations have many
different solutions, then equation (62) should include
many interesting solitons of the two-dimensional nonlinear
Schrödinger equation (43). In a similar way, we can obtain
the exponential solution of the hyperbolic equation (45)
in the form

A =
√

2K/Q sec
(√

K ζ + ζ0

)
exp[i(n0τ + n1ζ1 + n2ζ2)]

(63)
where n0, n1, and n2 are real constants satisfying the con-
dition 2n0 + n2

1 + n2
2 = −K (a constant).

Another kind of solution known as the Sinh-Gordon
solution can be obtained, following the same procedure
of Khater et al. [13], for both the elliptic and hyperbolic
cases given by equations (43) and (45), respectively, in the
form

A =
√

C/Q sinh
{
2 tanh−1

[
exp

(√
2C ζ + ζ0

)
− π

]}

× exp[i(c0τ + c1ζ1 + c2ζ2)] (64)

and

A =
√

K/Q sinh
{
2 tanh−1

[
exp

(√
2K ζ + ζ0

)
− π

]}

× exp[i(n0τ + n1ζ1 + n2ζ2)]. (65)

We shall now discuss the stability of the solution
of equation (36). Following Zakharov [34], we shall de-
fine the following two integrals of motion for the elliptic
case (P < 0):

N =
∫∫

|A|2 dζ1dζ2 (66)

H =
1
2

∫∫ {

∆1

∣∣
∣
∣
∂A

∂ζ1

∣∣
∣
∣

2

+ ∆2

∣∣
∣
∣
∂A

∂ζ2

∣∣
∣
∣

2

+
Q

2
|A|2

}

dζ1dζ2

(67)
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where N is the wave action and H is the Hamiltonian.
The use of equations (66) and (67) in equation (46) yields
the virial equation

∂2I

∂τ2
= 4H. (68)

Here I, the moment of inertia of the wave packet, is de-
fined as

I =
∫∫

(ζ2
1 + ζ2

2 ) |A|2 dζ1dζ2. (69)

Equation (68) when integrated gives

〈I〉 =
2τ2H

N
+ C1τ + C2 (70)

where the average value of the inertia is given by

〈I〉 =
1
N

∫∫
(ζ2

1 + ζ2
2 ) |A|2 dζ1dζ2. (71)

The constants of integration C1 and C2 are to be deter-
mined from the initial conditions C1 = ∂ 〈I〉 /∂τ |τ=0 =
I´(0), and C2 = 〈I〉 |τ=0 = I(0). Note that the constant C2

is always positive. The sign of H in equation (70) is now
important, since it is the (2τ2H/N) term which domi-
nates as τ increases. If Q < 0, then it is possible to have
H < 0 for quite a broad class of initial data. If there-
fore H < 0, then the right-hand side of equation (70)
can change sign after a finite value of τ . Since the inte-
gral on the left-hand side of equation (71) has a positive
integrand, this behaviour implies the existence of a singu-
larity of A after a definite time τ = τ0, and the solution
ceases to exist. Berkshire and Gibbon [45] have established
a close analogy to Sundman’s results on the collapse in
the N-body problem in classical mechanics by consider-
ing the integral in equation (71) as the moment of inertia
and went on to describe the singularity as (τ0 − τ)−1/2.
Landman et al. [46] have used a perturbation analysis
with respect to the space dimensions to construct singu-
lar solutions of the two-dimensional nonlinear Schrödinger
equation with cubic nonlinearity. These solutions blow up
at a rate [ln ln[(τ0 − τ)−1]]/(τ0 − τ)]1/2, in contrast to
the behaviour in three-dimensions where there is no loga-
rithmic correction. The behaviour of the sudden increase
in A after some finite time (i.e. when |A| → ∞ at the
collapse point) has been checked numerically by Konno
and Suzuki [9], and they confirmed these results. If now
Q > 0, then no singularity is predicted, and defocusing
occurs. If ∆2 = −1, then for this version of the nonlinear
Schrödinger equation (45), no singularity is predicted. For
focusing or collapse to occur in a finite time, we require
that 〈I〉 tends to zero, implying thereby Q < 0. This de-
mands that |A| → 0 everywhere except at the focus. Total
wave collapse will take place provided that the blow-up
singularities do not occur at times earlier than the col-
lapse by the virial theorem. Rasmussen and Rypdal [47],
and Berge [11] have shown that the virial theorem cannot
be used to predict the time of blow up, and it fails to give
information about whether or not 〈I〉 is concentrated at
the singular point. In an actual physical case, the dissipa-
tive effects will inhibit the earlier collapse from occurring.

However, Berge [11] has shown that collapse will not take
place in the hyperbolic two-dimensional case. It is interest-
ing to note here that the corresponding equation (67) for
the Hamiltonian H does not contain any nonlinear term
for the hyperbolic case. We should like to point out here
that for collapse to occur in a finite time, the group veloc-
ity rate P , and the nonlinear interaction coefficient Q must
change sign as the quantities ρ, k, l, ε(= ε(1)/ε(1)), and
V = ε(1)E2

0 are varied. Moreover, part of the region which
is stable in linear theory becomes unstable because of the
nonlinear focusing. The transition occurs from a marginal
state to an excited one for the subcritical value of the ap-
plied electric field. Similar results have been obtained by
Singh et al. [48] in their study of nonlinear dispersive insta-
bilities in Kelvin-Helmholtz magnetohydrodynamic flows.
They have shown that, when the velocity difference U is
less than a critical velocity Uc, then the equation govern-
ing the amplitude evolves into a self-focusing singularity,
and that the self-focusing of waves which predominates, at
short wavelengths, is directionally dependent. They have
also shown numerically that the self-focusing depends sen-
sitively on the strength of the applied magnetic field, and
the minimum velocity that allows the existence of self-
focusing increases with increasing magnetic field strength,
and also that this phenomena takes place for the elliptic
case only.

It is clear that the above results reveal the existence
of a region for nonlinear focusing when the wavenumbers
K2 > K2

c = (1/2)(1 − ρ). The focusing condition is sen-
sitive to the electric field velocity V (= ε(1)E2

0), and the
critical wavenumbers at which this condition is satisfied
increases with increasing electric field strength and den-
sity ratio. Moreover, the focusing has directional depen-
dence, and is significant at shorter wavelengths. The im-
portant mechanism therefore for growth in A after a finite
time holds only when ∆2 = 1, and Q < 0. In particular, if
C1(0) = 0, then the collapse occurs at time τ0 =

√
C2/4H

at a point in the (ζ1, ζ2) plane. When H > 0, an addi-
tional forcing of the initial data is required for the collapse
to occur, such as C1(0) < 0 and C2

1 (0) ≥ 16HC2(0). In
the second case, following Berkshire and Gibbon [45], the
conditions for collapse to occur in a finite time are I > 0,
C1(0) < 0, C2(0) > 0, and the angular momentum is zero.
Similar conditions have been obtained by Zubarev [38] in
studying the formation of root singularities on the free sur-
face of a conducting ideal fluid in a strong electric field.
He found that the nonlinear equation for two-dimensional
fluid motion can be solved with the small angle approx-
imation. In this case, he showed that for almost any ar-
bitrary initial conditions, the surface curvature becomes
infinite in a finite time. Figures 1−5 depict three dimen-
sional plots for the electric field parameter V versus the
wavenumbers k and l at which such a self-focusing phe-
nomenon takes place for the elliptic case only when the
dielectric constant parameter ε = ε(2)/ε(1) = 0.5. Fig-
ures 1−3 are drawn for the density parameter ρ = 0.2
when the wavenumber values k, l: 0.1 → (5, 7, 10), re-
spectively, and show that the wave collapse occurs for
wavenumbers values k ≤ 2 and l ≥ 3, and increases by
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Fig. 1. A plot of the electric field parameter V = ε(1)E2
0

against the wavenumbers k and l in which k: 0.1 → 5 and
l: 0.1 → 5 where ρ = ρ(2)/ρ(1) = 0.2 and ε = ε(2)/ε(1) = 0.5.

Fig. 2. A plot for the same system considered in Figure 1, but
with k: 0.1 → 7 and l: 0.1 → 7.

increasing the electric field parameter V . Figures 4 and 5
are drawn for the density parameter ρ = 1.2 when the
wavenumber values k, l: (0.67, 0.7) → (1, 10), respectively,
and show that the self-focusing phenomenon holds for all
values of the electric field parameter V when k, l ≥ 0.64,
and increases by increasing the applied electric field. Thus,
the electric field increases the collapsing region after the
critical wavenumbers k and l, which are different for the
different cases when ρ ≶ 1, respectively. Note that in the
second case when ρ > 1, the wave collapse occurs ear-
lier than the first case when ρ < 1, and for small critical
wavenumbers.

Fig. 3. A plot for the same system considered in Figure 1, but
with k: 0.1 → 10 and l: 0.1 → 10.

Fig. 4. A plot of the electric field parameter V = ε(1)E2
0

against the wavenumbers k and l in which k: 0.64 → 1 and
l: 0.64 → 1 where ρ = ρ(2)/ρ(1) = 1.2 and ε = ε(2)/ε(1) = 0.5.

Fig. 5. A plot for the same system considered in Figure 4, but
with k: 0.7 → 10 and l: 0.7 → 10.
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5 Modulational instability

To investigate modulational instability for both the trav-
elling and standing waves, we use the transformation

x2 = x1 − vkt, y2 = y1 − vlt, and t2 = t (72)

then equation (36) takes the form

i
∂A

∂t
+

1
2

[
P1

∂2A

∂x2
1

+ 2P2
∂2A

∂x1∂y1
+ P3

∂2A

∂y2
1

]
= Q1|A|2A,

(73)
where Q1 = Q/2. Equation (73) can be reduced to the one-
dimensional nonlinear Schrödinger equation by the substi-
tution [49]

X = mx + ny and T = t. (74)

Thus, for the travelling waves, we have

i
∂A

∂T
+ P

∂2A

∂X2
= Q1|A|2A, (75)

where m and n are arbitrary constants, and

P = (1/2)
(
m2P1 + 2mnP2 + n2P3

)
. (76)

It is also known that the solutions of equation (75)
are unstable under modulation if PQ1 < 0. The above
equation (75) can also be written in the form

i
∂A

∂T
+ P

∂2A

∂X2
+ Q̃1|A|2A = 0 (77)

where Q̃1 = −Q/2. As is well known, when the nonlinear
effects are small, the system of equations that describe
the physical phenomena admit harmonic wave solutions
with constant amplitude. If the amplitude of the wave
is small-but-finite, the nonlinear terms can not be ne-
glected and the nonlinearity gives rise to the variation
of amplitude both in the space and time variables. When
the amplitude varies slowly over a period of oscillation,
a stretching transformation allows us to decompose the
system into a rapidly varying part associated with the os-
cillation and slowly varying part such as the amplitude. A
formal solution can be given in the form of an asymptotic
expansion, and an equation determining the modulation
of the first order amplitude can be derived. For instance,
the nonlinear Schrödinger equation (77) is the simplest
representative equation describing the self-modulation of
one-dimensional monochromatic plane waves in dispersive
media. It exhibits a balance between the nonlinearity and
dispersion. We shall try here to present a progressive wave
solution to the nonlinear Schrödinger equation (77). For
that purpose, we shall propose a solution of the form [50]

A = a(T )V (ξ) exp{i[Ω(T )−κX ]}, ξ = α(T )(X−2κPT )
(78)

where κ is a constant, a(T ), α(T ), and V (ξ) are some
real functions to be determined from the solution of equa-
tion (77). Introducing equation (78) into equation (77),

and setting the real and imaginary parts of the resulting
equation equal to zero, we obtain the following sets of or-
dinary differential equations

a′(T )
a(T )

V +
α′(T )
α(T )

ζV ′ = 0 (79)

[−Ω′(T ) − Pκ2
]
V + Pα2(T )V ′′ + Q̃1a

2(T )V 3 = 0
(80)

where primes denote the derivative of the corresponding
quantities with respect to its argument. Here, we shall be
concerned with the localized travelling wave solution to
the field equation, i.e. V and its various order derivatives
vanish as ξ → ±∞. Under these assumptions, one can
show that the square of V is square integrable over the
interval (−∞,∞). Thus, multiplying equation (79) by V ′
and integrating the resulting equation with respect to ξ
from −∞ to ∞, we obtain
[
a′(T )
a(T )

− 1
2

α′(T )
α(T )

]
〈
V 2
〉

= 0,

where
〈
V 2
〉

=
∫ ∞

−∞
V 2dξ. (81)

Since
〈
V 2
〉

is bounded and non-zero, we obtain the fol-
lowing differential equation

a′(T )
a(T )

− 1
2

α′(T )
α(T )

= 0. (82)

Now, in the first place, we shall propose a solution of
equation (80) of the following form

V (ζ)) = sech ξ. (83)

Introducing equation (83) into equation (80), we obtain
the following differential equations

α2(T ) =
Q̃1

2P
a2(T ), and Ω′(T ) =

Q̃1

2
a2(T )−Pκ2. (84)

It is seen from the first term of equation (84) that, in
order to have a real solution α(T ) and a(T ), the coeffi-
cients P and Q̃1 must satisfy the inequality PQ̃1 > 0.
Now, let us return to the investigation of equation (79).
It can be shown from the first term of equation (84) that
α′(T )/α(T ) = a′(T )/a(T ). Introducing this relation into
equation (79), we obtain

a′(T )
a(T )

= 0. (85)

The solution of this equation may be given as follows

a(T ) = a0 (86)

where a0 is a constant. Introducing equation (86) into
equation (84), we obtain

α(T ) =
(

Q̃1

2P

)1/2

a0 and Ω(T ) =
(
−Pκ2 +

Q̃1a
2
0

2

)
T.

(87)
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Here, in obtaining the function Ω(T ), we have utilized the
regularity condition that Ω(T ) = 0 at T = 0. Thus the
final solution may be given in the form

A = a0sech ξ exp{i[Ω(T ) − κX ]},

ξ =
(

Q̃1

2P

)1/2

a0(X − 2κPT ). (88)

Now, secondly, we shall propose a solution to equa-
tion (80) of the form

V = tanh ξ. (89)

Since this function is not square integrable, we cannot fol-
low the above procedure to handle this problem. As is
seen from equation (79), for this type of solution ξV ′(ξ)
approaches to zero as ξ → ∞. Therefore, if we investi-
gate the far field behaviour of equation (79) and consider
that ξV ′(ξ) vanishes as ξ → ∞, we obtain the following
differential equation

a′(T )
a(T )

= 0. (90)

The solution of this equation may be given by

a(T ) = a0 (91)

where a0 is a constant. Now, let us introduce the proposed
solution (89) into equation (80). In order to satisfy this
equation, the following relations must be satisfied

2Pα2(T ) + Q̃1a
2
0 = 0 (92)

−Ω′(T ) − Pκ2 + Q̃1a
2
0 = 0. (93)

The relation (92) holds true if and only if P and Q̃1 have
different signs. Equation (92) also gives

α(T ) =
(
− Q̃1

2P

)1/2

a0. (94)

Finally, integrating equation (93), and utilizing the regu-
larity condition Ω(T ) = 0 at T = 0, we obtain

Ω(T ) =
(
−Pκ2 + Q̃1a

2
0

)
T. (95)

Thus, the final solution may be given by

A = a0 tanh ξ exp{i[Ω(T ) − κX ]},

ξ =
(
− Q̃1

2P

)1/2

a0(X − 2κPT ). (96)

On the other hand, for the standing waves, we ob-
tain the following one-dimensional nonlinear Schrödinger
equation

i

{
∂A

∂x
+ vk

∂A

∂t

}
+ P̂

∂2A

∂t2
= Q̂|A|2A, (97)

in which the roles of space and time are interchanged.
Changing the independent variables from x and t to ξ̂ =
t − vkx and η̂ = x, we can express equation (97) in the
form

i
∂A

∂η̂
+ P̂

∂2A

∂ξ̂2
= Q̂|A|2A, (98)

which is also a nonlinear Schrödinger equation [51].
Letting A = (1/2)â exp(iβ̂), with real functions â

and β̂, in equation (98) and separating the real and imag-
inary parts, we obtain

∂â

∂η̂
+ 2P̂

[
∂â

∂ξ̂

∂β̂

∂ξ̂
+

â

2
∂2β̂

∂ξ̂2

]

= 0 (99)

∂β̂

∂η̂
− P̂

[
1
â

∂2â

∂ξ̂2
−
(

∂β̂

∂ξ̂

)2
]

= −1
4
Q̂â2. (100)

For monochromatic waves (a single frequency wave)
the amplitude and phase are independent of t, so that
∂â/∂ξ̂ = ∂β̂/∂ξ̂ = 0, and equations (99) and (100) can be
integrated to give

â = â0 and β̂ = −(1/4)Q̂â2
0 + β̂0 (101)

where â0 and β̂0 are constants. Equations (99) and (100)
can be used to analyze the stability of the corresponding
monochromatic solution. To do this, we let

â = â0 + â1 and β̂ = −(1/4)Q̂â2
0η̂ + β̂0 + β̂1 (102)

where â1 and β̂1 are small compared with the preced-
ing terms. Substituting equation (102) into equations (99)
and (100), and neglecting the nonlinear terms in â1 and β̂1,
we obtain

∂â1

∂η
+ P̂ â0

∂2β̂1

∂ξ2
= 0 (103)

∂β̂1

∂η
− P̂

â0

∂2â1

∂ξ2
= −1

2
Q̂â0â1. (104)

Since equations (103) and (104) are linear, we seek
their solutions in the form

(
â1, β̂1

)
=
(
ã1, β̃1

)
exp

[
i
(
k̃η̂ − ω̃ξ̂

)]
(105)

where ã1 and β̃1 are constants. Substituting these solu-
tions into equations (103) and (104), we obtain

k̃2 = ω̃2P̂ 2

[

ω̃2 +
Q̂â2

0

2P̂

]

(106)

which shows that, if Q̂/P̂ > 0 (i.e. if either the conditions



252 The European Physical Journal B

P̂ > 0 and Q̂ > 0, or P̂ < 0 and Q̂ < 0 hold simultane-
ously), then k̃ is always real for all values of ω̃ so that the
monochromatic waves in this case are neutrally stable. On
the other hand, if Q̂/P̂ < 0 (i.e. if either the conditions
P̂ > 0 and Q̂ < 0, or P̂ < 0 and Q̂ > 0 hold simultane-
ously), then k̃2 is negative for all ω̃ < (−Q̂â2

0/2P̂ )1/2. Con-
sequently, disturbances grow exponentially with ξ̂, and the
monochromatic waves in this case are unstable. Also if
Q̂/P̂ < 0 and ω̃ > (−Q̂â2

0/2P̂ )1/2 are satisfied, then the
monochromatic waves are neutrally stable.

The modulation instability is known to be an effective
physical mechanism in optics and fluids for the break up of
continuous modes into solitary waves. Three kinds of mod-
ulation instabilities, i.e. temporal, spatial, and spatiotem-
poral instabilities [52] are known to occur. So far, theoreti-
cal analyses of the onset of spatiotemporal instability have
been based on the standard (3+1)-dimensional nonlinear
Schrödinger equation which results from Maxwell’s and
fluid equations under the assumption of a slowly varying
envelope approximation. Such spatiotemporal instability
will be presented in a separate subsequent paper in the
near future.

6 Conclusions

In the present work, a weakly nonlinear theory of the
electrohydrodynamic Rayleigh-Taylor configuration of two
superposed dielectric fluids in the presence of a horizon-
tal applied electric field in (2+1)-dimensions is investi-
gated using the multiple time scales method. The basic
equations and the boundary conditions appropriate to the
problem are given leading to a sequence of sets of equa-
tions connecting different parameters. We have obtained
the standard two-dimensional nonlinear Schrödinger equa-
tion in elliptic and hyperbolic forms. We have also ob-
tained the general soliton solutions to this equation in
both cases. This evolution equation of the wave packets in
(2+1)-dimensions has been transformed, using the func-
tion transformation method, into an exponential and a
Sinh-Gordon equation, and the corresponding solutions
of these equations are obtained. The most dramatic con-
sequence for the wave packets, i.e. nonlinear focusing or
wave collapse is investigated. This phenomenon provides a
local region in which amplitudes become unbounded in a
finite time. The wave packet collapse is analyzed both ana-
lytically and numerically. It is found that the electric field
increases the collapsing region for different cases when
ρ ≶ 1, and that the wave collapse occurs earlier in the
second case when ρ > 1, for some critical wavenumbers.
The modulational instability for the corresponding one-
dimensional nonlinear Schrödinger equation is obtained
and discussed for both the travelling and standing waves.
For the former case, it is found that the obtained evolution
equation admits solitary wave solutions with variable wave
amplitude and speed. For the later case, the resulting evo-
lution equation has been used to show that the monochro-
matic waves are stable in this case, and to determine the
amplitude dependence of the cutoff frequencies.

Appendix

Introducing the linear operators defined as

L
[
Φ(1),(2)

n , Ψ (1),(2)
n

]
=
(

∂2

∂x2
0

+
∂2

∂y2
0

+
∂2

∂z2

)

×
(
Φ(1),(2)

n , Ψ (1),(2)
n

)
(A.1)

M
[
ηn, Φ(1),(2)

n

]
=

∂ηn

∂t0
− ∂φ

(1),(2)
n

∂z
(A.2)

O1,2[Ψn] =
[[

∂Ψn

∂(x0, y0)

]]
(A.3)

G[ηn, Ψn] =
[[

ε
∂Ψn

∂z

]]
+

∂ηn

∂x0
E0 [[ε]] (A.4)

N [ηn, Φn, Ψn] =
∂Φ

(1)
n

∂t0
− ρ

∂Φ
(2)
n

∂t0
+ (1 − ρ)ηn

− frac∂2ηn∂x2
0 −

∂2ηn

∂y2
0

− E0

[[
ε

(
∂Ψn

∂x0

)]]
. (A.5)

The first order problem for O(δ) is given by

L
[
Φ

(1),(2)
1 , Ψ

(1),(2)
1

]
= 0, (A.6)

M
[
η1, Φ

(1),(2)
1

]
= 0, at z = 0 (A.7)

O1,2[Ψ1] = 0, at z = 0 (A.8)

G[η1, Ψ1] = 0, at z = 0 (A.9)

N [η1, Φ1, Ψ1] = 0, at z = 0. (A.10)

The second order problem for O(δ2) is given by

L
[
Φ

(1),(2)
2 , Ψ

(1),(2)
2

]
= −2

[
∂2

∂x0∂x1
+

∂2

∂y0∂y1

]

×
(
Φ

(1),(2)
1 , Ψ

(1),(2)
1

)
(A.11)

M
[
η2, Φ

(1),(2)
2

]
= −∂η1

∂t1
+ η1

∂2Φ
(1),(2)
1

∂z2
− ∂η1

∂x0

∂Φ
(1),(2)
1

∂x0

− ∂η1

∂y0

∂Φ
(1),(2)
1

∂y0
, at z = 0 (A.12)

O1,2[Ψ2] = −
[[

∂Ψ1

∂(x1, y1)

]]
− ∂η1

∂(x0, y0)

[[
∂Ψ1

∂z

]]

− η1

[[
∂2Ψ1

∂(x0, y0)∂z

]]
, at z = 0 (A.13)
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G[η2, Ψ2] =
∂η1

∂x0

[[
ε
∂Ψ1

∂x0

]]
+

∂η1

∂y0

[[
ε
∂Ψ1

∂y0

]]
− η1

[[
ε
∂2Ψ1

∂z2

]]

− ∂η1

∂x1
E0 [[ε]] , at z = 0 (A.14)

N [η2, Φ2, Ψ2] = −
[

∂Φ
(1)
1

∂t1
− ρ

∂Φ
(2)
1

∂t1

]

− η1

[
∂2Φ

(1)
1

∂t0∂z
− ρ

∂2Φ
(2)
1

∂t0∂z

]

− 1
2





{
∂Φ

(1)
1

∂x0

}2

− ρ

{
∂Φ

(2)
1

∂x0

}2




− 1
2




{

∂Φ
(1)
1

∂y0

}2

− ρ

{
∂Φ

(2)
1

∂y0

}2




− 1
2





{
∂Φ

(1)
1

∂z

}2

− ρ

{
∂Φ

(2)
1

∂z

}2




+ 2
∂2η1

∂x0∂x1
+ 2

∂2η1

∂y0∂y1
− 1

2

[[

ε

(
∂Ψ1

∂x0

)2
]]

− 1
2

[[

ε

(
∂Ψ1

∂y0

)2
]]

+
1
2

[[

ε

(
∂Ψ1

∂z

)2
]]

+ η1E0

[[
ε

(
∂2Ψ1

∂x0∂z

)]]
+ E0

[[
ε

(
∂Ψ1

∂x1

)]]

+ 2
∂η1

∂x0
E0

[[
ε
∂Ψ1

∂z

]]

+
(

∂η1

∂x0

)2

E2
0 [[ε]] at z = 0. (A.15)

The third order problem for O(δ3) is given by

L
[
Φ

(1),(2)
3 , Ψ

(1),(2)
3

]
= −

[
∂2

∂x2
1

+
∂2

∂y2
1

+ 2
∂2

∂x0∂x1

+2
∂2

∂y0∂y1
+ 2

∂2

∂x0∂x2
+ 2

∂2

∂y0∂y2

] (
Φ

(1),(2)
1 , Ψ

(1),(2)
1

)

(A.16)

M
[
η3, Φ

(1),(2)
3

]
= −∂η2

∂t1
− ∂η1

∂t2
+ η2

∂2Φ
(1),(2)
1

∂z2

+
η2
1

2
∂3Φ

(1),(2)
1

∂z3
− ∂η1

∂x0

{
∂Φ

(1),(2)
2

∂x0
+

∂Φ
(1),(2)
1

∂x1

}

− ∂η1

∂y0

{
∂Φ

(1),(2)
2

∂y0
+

∂Φ
(1),(2)
1

∂y1

}

+ η1
∂2Φ

(1),(2)
2

∂z2

− η1

[
∂η1

∂x0

(
∂2Φ

(1),(2)
1

∂x0∂z

)
+

∂η1

∂y0

(
∂2Φ

(1),(2)
1

∂y0∂z

)]

− ∂η2

∂x0

(
∂Φ

(1),(2)
1

∂x0

)
− ∂η2

∂y0

(
∂Φ

(1),(2)
1

∂y0

)
− ∂η1

∂x1

(
∂Φ

(1),(2)
1

∂x0

)

− ∂η1

∂y1

(
∂Φ

(1),(2)
1

∂y0

)
, at z = 0 (A.17)

O1,2[Ψ3] = −
[[

∂Ψ2

∂(x1, y1)
+

∂Ψ1

∂(x2, y2)

]]

− η1
∂η1

∂(x0, y0)

[[
∂2Ψ1

∂z2

]]
−
(

∂η2

∂(x0, y0)
+

∂η1

∂(x1, y1)

)

×
[[

∂Ψ1

∂z

]]
− ∂η1

∂(x0, y0)

[[
∂Ψ2

∂z

]]

− η2

[[
∂2Ψ1

∂(x0, y0)∂z

]]
− η1

[[
∂2Ψ2

∂(x0, y0)∂z

]]

− η1

[[
∂2Ψ1

∂(x1, y1)∂z

]]
− η2

1

2

[[
∂3Ψ1

∂(x0, y0)∂z2

]]
, at z = 0

(A.18)

G[η3, Ψ3] = η1
∂η1

∂x0

[[
ε

∂2Ψ1

∂x0∂z

]]
+
(

∂η2

∂x0
+

∂η1

∂x1

)[[
ε
∂Ψ1

∂x0

]]

+
∂η1

∂x0

[[
ε

(
∂Ψ2

∂x0
+

∂Ψ1

∂x1

)]]
+ η1

∂η1

∂y0

[[
ε

∂2Ψ1

∂y0∂z

]]

+
(

∂η2

∂y0
+

∂η1

∂y1

)[[
ε
∂Ψ1

∂y0

]]
+

∂η1

∂y0

[[
ε

(
∂Ψ2

∂y0
+

∂Ψ1

∂y1

)]]

− η2

[[
ε
∂2Ψ1

∂z2

]]
− η2

1

2

[[
∂3Ψ1

∂z3

]]

− η1

[[
ε
∂2Ψ2

∂z2

]]
−
(

∂η2

∂x1
+

∂η1

∂x2

)
E0 [[ε]] , at z = 0

(A.19)
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N [η3, Φ3, Ψ3] = −
{

∂Φ
(1)
2

∂t1
− ρ

∂Φ
(2)
2

∂t1

}

−
{

∂Φ
(1)
1

∂t2
− ρ

∂Φ
(2)
1

∂t2

}

− η2

[
∂2Φ

(1)
1

∂t0∂z
− ρ

∂2Φ
(2)
1

∂t0∂z

]

− η1

[
∂2Φ

(1)
2

∂t0∂z
− ρ

∂2Φ
(2)
2

∂t0∂y

]

− η1

[
∂2Φ

(1)
1

∂t1∂z
− ρ

∂2Φ
(2)
1

∂t1∂y

]

− η2
1

2

[
∂3Φ

(1)
1

∂t0∂z2
− ρ

∂3Φ
(2)
1

∂t0∂z2

]

− η1

{
∂Φ

(1)
1

∂x0

∂2Φ
(1)
1

∂x0∂z
− ρ

∂Φ
(2)
1

∂x0

∂2Φ
(2)
1

∂x0∂z

}

− η1

{
∂Φ

(1)
1

∂y0

∂2Φ
(1)
1

∂y0∂z
− ρ

∂Φ
(2)
1

∂y0

∂2Φ
(2)
1

∂y0∂z

}

− η1

{
∂Φ

(1)
1

∂z

∂2Φ
(1)
1

∂z2
− ρ

∂Φ
(2)
1

∂z

∂2Φ
(2)
1

∂z2

}

−
{

∂Φ
(1)
1

∂x0

∂Φ
(1)
2

∂x0
− ρ

∂Φ
(2)
1

∂x0

∂Φ
(2)
2

∂x0

}

−
{

∂Φ
(1)
1

∂y0

∂Φ
(1)
2

∂y0
− ρ

∂Φ
(2)
1

∂y0

∂Φ
(2)
2

∂y0

}

−
{

∂Φ
(1)
1

∂x0

∂Φ
(1)
1

∂x1
− ρ

∂Φ
(2)
1

∂x0

∂Φ
(2)
1

∂x1

}

−
{

∂Φ
(1)
1

∂y0

∂Φ
(1)
1

∂y1
− ρ

∂Φ
(2)
1

∂y0

∂Φ
(2)
1

∂y1

}

−
{

∂Φ
(1)
1

∂z

∂Φ
(1)
2

∂z
− ρ

∂Φ
(2)
1

∂z

∂Φ
(2)
2

∂z

}

+
∂2η1

∂x2
1

+
∂2η1

∂y2
1

+ 2

[
∂

∂x0

{
∂η2

∂x1
+

∂η1

∂x2

}
+

∂

∂y0

{
∂η2

∂y1
+

∂η1

∂y2

}]
− 2

∂η1

∂x0

∂η1

∂y0

∂2η1

∂x0∂y0

− 1

2

∂2η1

∂x2
0

(
∂η1

∂y0

)2

− 1

2

∂2η1

∂y2
0

(
∂η1

∂x0

)2

− 3

2

[
∂2η1

∂x2
0

(
∂η1

∂x0

)2

+
∂2η1

∂y2
0

(
∂η1

∂y0

)2
]

− η1

[[
ε

{
∂Ψ1

∂x0

(
∂2Ψ1

∂x0∂z

)
+

∂Ψ1

∂y0

(
∂2Ψ1

∂y0∂z

)}]]

−
[[

ε

(
∂Ψ1

∂x0

){
∂Ψ2

∂x0
+

∂Ψ1

∂x1

}]]
−
[[

ε

(
∂Ψ1

∂y0

){
∂Ψ2

∂y0
+

∂Ψ1

∂y1

}]]
+ η1

[[
ε
∂Ψ1

∂z

(
∂2Ψ1

∂z2

)]]
+

[[
ε
∂Ψ1

∂z

(
∂Ψ2

∂z

)]]
+ 2E0

∂η1

∂x0

[[
ε
∂Ψ2

∂z

]]

+ η1E0

[[
ε

∂

∂z

(
∂Ψ2

∂x0
+

∂Ψ1

∂x1

)]]
+ η2E0

[[
ε

(
∂2Ψ1

∂x0∂z

)]]
+

η2
1

2
E0

[[
ε

(
∂3Ψ1

∂x0∂z2

)]]
+ E0

[[
ε

(
∂Ψ2

∂x1
+

∂Ψ1

∂x2

)]]

+ 2η1E0
∂η1

∂x0

[[
ε
∂2Ψ1

∂z2

]]
+ 2E0

{
∂η2

∂x0
+

∂η1

∂x1

}[[
ε
∂Ψ1

∂z

]]
− 2E0

(
∂η1

∂x0

)(
∂η1

∂y0

)[[
ε
∂Ψ1

∂y0

]]
− 2

∂η1

∂x0

[[
ε
∂Ψ1

∂x0

(
∂Ψ1

∂z

)]]

− 2
∂η1

∂y0

[[
ε
∂Ψ1

∂y0

(
∂Ψ1

∂z

)]]
+ 2

∂η1

∂x0

(
∂η2

∂x0
+

∂η1

∂x1

)
E2

0 [[ε]] − 2E0

(
∂η1

∂x0

)2 [[
ε
∂Ψ1

∂x0

]]
, at z = 0. (A.20)

(See equation (A.20) above.)
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